

Date Planned ://	Daily Tutorial Sheet-11	Expected Duration : 90 Min
Actual Date of Attempt : / /	Numerical Value Type for JEE Main	Exact Duration :

	JEE Main		
126.	A container having 3 mole of ideal gas occupies 60 litres at pressure P and temperature T. If 0.1 mole of gas is introduced at same P and T in container the change in volume will be litre.		
127.	An ideal gas on heating from 100 K to 109 K shows an increase by a% in its volume at constant P. The value of a is		
128.	A bulb is having ideal gas at 27° C. On heating the bulb to 227° C, 2 litre of gas measured at 227° C i expelled out. The volume of bulb in litre is		
129.	A cylinder containing 5 litre of O_2 at 25°C was leaking. When the leakage was detected and checked, the pressure inside cylinder was reduced from 8 atm to 2 atm. The ratio of mass of O_2 initially present to that left after leakage is equal to		
130.	16 mL of He gas effuses through a pin hole in 4 sec from a container having P_{He} equal to 1 atm. If same container is filled with CH_4 having pressure 2 atm, how much volume (in mL) of CH_4 will be leaked through same pin hole in 2 sec?		
131.	Root mean square speed of a gas is $5 \mathrm{ms}^{-1}$. If some molecules out of 10 molecules in all are moving with $7 \mathrm{ms}^{-1}$ and rest all the molecules moving with $3 \mathrm{m \ sec}^{-1}$, then number of molecules moving with higher speed is		
132.	A metallic carbonyl $M(CO)_X$ is in gaseous state. The rate of diffusion of CH_4 is 3.31 time faster than this gaseous carbonyl under identical conditions. If atomic mass of metal is 63.29, the closest integer value of X is		
133.	A gas has molecular formula $O_n.$ If its vapour density is 24, the value of n is		
134.	The density of vapours of a substance at 1 atm and 500 K is 0.3kg m^{-3} . The vapours effuse 0.4216 times faster than O_2 through a pin hole under identical conditions. If $R = 0.08$ litre atm $K^{-1} \text{mol}^{-1}$. The molar volume of gas is $a \times 10^2$ litre. The value of a is		
135.	A flask of capacity 10 litre containing air is heated from 27°C to 327°C. The ratio of mole of air present a 27°C to mole present at 327°C is		
136.	0.75 mole of solid A_4 and 2 mole of gaseous O_2 are heated to react completely in a sealed bottle to produce gaseous compound A_3O_n . After the compound is formed, the vessel is brought to initial temperature, the pressure is found to half of initial pressure. The value of n is		
137.	A graph is plotted for a vanderwaal's gas between PV_m vs P leading to an intercept of 22.16 litre-atm. The temperature of gas at which these observations of P and V_M were made is $^{\circ}$ C.		

 $(R = 0.08 \text{ litre atm } K^{-1} \text{ mol}^{-1})$

- **138.** Two boxes A and B having their volume ratio 1 : 4 and filled with Ne are inter connected through a narrow tube of negligible volume. Box A is kept at 300 K and box B at 600 K. The ratio of mole of Ne gas in box B to box A is ______?
- 139. The density of the vapour of a substance at 1 atm and 500 K is $0.36\,\mathrm{kg\,m^{-3}}$. If molar mass of gas is $18\,\mathrm{g\,mol^{-1}}$, the molar volume of gas is $5\times10^a\,\mathrm{m^3}$ / mol. What is the value of a ?
- 140. The ratio of final to initial pressures of a gas when u_{rms} of a gas in a container is increased from $5\times10^4\,\mathrm{cm~sec^{-1}}$ to $10\times10^4\,\mathrm{cm~sec^{-1}}$.

147